
Minimal and Complete
Class
& Shallow vs Deep copy
& Templating (Composite
and Aggregation)

Lecture 5

Data Structures and Abstractions

Versioning and Backing Up

• Of course, as you add to the class you must:
– Backup the previous version before changing anything.
– Change the version number and describe what you are changing.
– Test everything in the test plan again.

• The easiest way to store the backups is simply to have a
directory called ‘backup’ and label the backups (presumably
zip files) with the version number.
For example: Light-01.zip, Light-02.zip etc.

• The zip file will contain the entire workspace, making
reversion to a backup simple.

2

Versioning and Backing Up
• The previous backup and versioning method is manually intensive.

• There are automated tools available which help with this.

• You are encouraged to try out a tool like git http://git-scm.com/,
Subversion http://subversion.tigris.org/ or Redmine
http://www.redmine.org/. You might want to try a demo of Redmine at
http://demo.redmine.org/.

• Subversion is server software and you as the user connect to it using a
client which runs on your machine. One example is TortoiseSVN
http://tortoisesvn.tigris.org/.

• We recommend the following if you can’ t make up your mind.
– GithHub https://education.github.com/ or

– Bitbucket https://education.github.com/

• Make sure that the repositories are private.

3

http://git-scm.com/
http://subversion.tigris.org/
http://www.redmine.org/
http://demo.redmine.org/
http://tortoisesvn.tigris.org/
https://education.github.com/
https://education.github.com/

Code & Test Plan

The additions are made in order:
– Set methods for each data member.

– Get methods for each data member.

– Overloaded assignment operator.

– Copy constructor.

– If required add:
• overloaded input operator;

• overloaded relational operators;

• overloaded arithmetic operators;

• file I/O methods;

• other overloaded constructors;

• processing methods

4

This list may not

be the minimal
set.

Should these be part of the
class?

Think through this carefully.

I/O operators would not
normally be part of the class –
see previous topics. So where
would you implement them? [1]

Change Plan
For each change or addition to a class, you must:

– Add the method descriptions to the header (.h)
file.

– Add the code to the implementation (.cpp) file.

– Add tests to the test plan.

– Add tests to the test program (unit test program).

– Run all the tests every time and debug the code

5

• // Light.h
• // Class representing a light
• //
• // Version
• // 01 - Nicola Ritter date ..
• // 02 – Nicola Ritter, date ...
• // Added in Set methods
• // 03 – smr, date..
• // to convert all friend methods to non-friends,
• // non-members
• //--

6

Changes to the Header File

It is very
important to

record what you
changed!

Use Doxgen style
comments in

header (.h) files

• // Needs doxgen comments
• // separate the implementation – remove from inside the class
• class Light
• {
• public:
• Light () {Clear ();}

• ~Light () {}; //[1]

• void Clear ();

• void SetColour (const string &colour) {m_colour = colour;}
• bool SetRadius (float radius);
• void Switch () {m_on = !m_on;}

• friend ostream& operator << (ostream &ostr, const Light &light); [2]

• private:
• // Any string giving a colour is acceptable
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

7

We are accepting
any string as a

colour, so there is
no error state

Inline function, switches the light to
the opposite of what it was

• //--

• bool Light::SetRadius(float radius)
• {
• if (radius > 0)
• {
• m_radius = radius;
• return true;
• }
• else
• {
• return false;
• }
• }

• //--

8

Changes to the Implementation (.cpp) File

Test Description Actual test call/data Expected Output Passed

1 Check that constructor
initialises the data and
check that output operator
works.

Light light 0 cm, white light is off

2 Colour setting works. light.SetColour (“red”) 0 cm, red light is off

3 Setting a negative radius
will fail.

light.SetRadius (-9.3) Error message

0 cm, red light is off

4 Setting with a positive
radius will work.

light.SetRadius (9.3) 9.3 cm, red light is off

5 Switching an off light on. light.Switch () 9.3 cm, red light is on

6 Switching an on light off. light.Switch () 9.3 cm, red light is off

7 Clearing a light that is on. light.Switch()

light.Clear ()

0cm, white light is off

9

Changes to the Test Plan [1]

• #include “Light.h”

• using namespace std; // expose everything – not good but it is convenient for now.

• int main()

• {

• Light light;

• cout << "Light Test Program" << endl << endl;

• cout << "Test One" << endl;

• cout << light << endl << endl;

• cout << "Test Two" << endl;

• light.SetColour("red");

• cout << light << endl << endl;

• cout << "Test Three" << endl;

• if (!light.SetRadius((float)-9.3))

• {

• cerr << "Radius must be greater than 0" << endl;

• }

• cout << light << endl << endl;

•

10

Changes to the Test File (Unit Test)

The (float) is called a ‘cast’.
Without it, the compiler
assumes 9.3 is a double

rather than a float, and a
warning is generated stating

“truncation from 'const
double' to 'float‘” [1]

• cout << "Test Four" << endl;
• if (!light.SetRadius((float)9.3))
• {
• cerr << "Radius must be greater than 0" << endl;
• }
• cout << light << endl << endl;

• cout << "Test Five" << endl;
• light.Switch();
• cout << light << endl << endl;
•

• cout << "Test Six" << endl;
• light.Switch();
• cout << light << endl << endl;

• cout << "Test Seven" << endl;
• light.Switch();
• light.Clear();
• cout << light << endl << endl;

• cout << endl;

• return 0;
• }

11

This is about as long as a
function should get.

If more tests get added,
then main() must become a

function that calls other
functions that do the actual

tests.

Each test can be in its own
function. Makes things a lot

neater.

Output From LightTest
• Light Test Program

• Test One
• 0 cm, white light is off

• Test Two
• 0 cm, red light is off

• Test Three
• Radius must be greater than 0
• 0 cm, red light is off

12

Test Four

9.3 cm, red light is off

Test Five

9.3 cm, red light is on

Test Six

9.3 cm, red light is off

Test Seven

0 cm, white light is off

Refactored LightTest.cpp
// LightTest.cpp

// modularised unit test – preferred way so that each
// test number matches the test plan number.

// Approach for unit testing classes for assignment

//--

#include "Light.h"

//--

void Test1 (); //print after construction
void Test2 (); // set colour
void Test3 ();

void Test4 ();

void Test5 ();

void Test6 ();

void Test7 ();

13

It is also a good idea to comment each
call to indicate what the test is doing.
Get this comment from the test plan

table.

• //---

• int main()
• {
• Light light;

• cout << "Light Test Program" << endl << endl;

• Test1 (); //print after construction
• Test2 (); // set colour
• Test3 ();
• Test4 ();
• Test5 ();
• Test6 ();
• Test7 ();

• cout << endl;
• return 0;
• }

14

It is also a good idea to comment each
call to indicate what the test is doing.

Copy/Paste from testplan table

• //--

• void Test1 () // comment each test here too - copy/paste from testplan table

• {

• Light light;

• cout << "Test 1" << endl; // make it more descriptive

• cout << light << endl << endl;

• }

• //--

• void Test2 () // set colour

• {

• Light light;

• cout << "Test 2" << endl;

• light.Set("red");

• cout << light << endl << endl;

• }

• etc...

15

Get Methods [1]
• public:

• Light () {Clear ();}

• ~Light () {}

• void Clear ();

• void SetColour (const string &colour) {m_colour = colour;}

• bool SetRadius (float radius);

• void Switch ();

• void GetColour (string &colour) const {colour = m_colour;}

• float GetRadius () const {return m_radius;}

• bool IsOn () const {return m_on;}

• etc.

16

Get Methods

17

public:

Light () {Clear ();}

~Light () {};

void Clear ();

void SetColour (const string &colour) {m_colour = colour;}

bool SetRadius (float radius);

void Switch ();

void GetColour (string &colour) const {colour = m_colour;}

float GetRadius () const {return m_radius;}

bool IsOn () const {return m_on;}

etc.

Objects are
returned

parameter-wise.

Get Methods

18

Methods that
should not change

the data are
declared as const.
This ensures that

they cannot change
the data.

public:

Light () {Clear ();}

~Light () {};

void Clear ();

void SetColour (const string &colour) {m_colour = colour;}

bool SetRadius (float radius);

void Switch ();

void GetColour (string &colour) const {colour = m_colour;}

float GetRadius () const {return m_radius;}

bool IsOn () const {return m_on;}

etc.

Shallow versus Deep Copy

• The assignment operator, copy constructor and destructor must always be
overloaded (written) for a class that has pointer data. [1]
• If *any* of these 3 are needed, *all 3* are needed.

• To be safe, always write them but keep them empty for non-pointer data.

• This is because if you do not do so, the compiler will provide default
versions for you.

• Such default versions may not do what you actually want them to do for
pointer data. If there is no pointer data member, then the default versions
are just fine – but see above concerning safety.

• For example, if you have a pointer in a class, the default versions would
copy the value of the pointer itself, rather than make a copy of what the
pointer is pointing to!

• The copying of a pointer instead of that to which it is pointing, is called a
shallow copy. It results in one data being pointed to by more than one
pointer.

• The copying of the contents of the memory to which it is pointing is called
a deep copy.

19

Simple Pointer Class
• class Pointer // simple illustration only – not complete to demonstrate what happens if care

is not exercised in //design when the advice that is provided earlier is not
followed.

• {
• public:
• Pointer () {m_ptr = NULL;} // nullptr is preferred instead of NULL
• ~Pointer () {Clear ();}

• void Clear ();

• // Returns false if there is no memory available
• bool Set (int number);

– // friend shouldn't be here, but it is convenient for now to do convenient output.
Convert it non-friend and non-member as an exc.

– // a get method would be needed to make the conversion work.
• friend ostream& operator << (ostream &ostr, const Pointer &pointer);
• private:
• int *m_ptr; // it is an integer pointer. [1] [2]
• // Has pointer data, so copy constructor and assignment operator is also needed along

with the destructor

• };

20

• //--

• void Pointer::Clear ()
• {
• if (m_ptr != NULL)
• {
• delete m_ptr;
• }

• m_ptr = NULL;

• }

21

• //--

• bool Pointer::Set (int number)
• {
• if (m_ptr == NULL)
• {
• m_ptr = new int; // “new” creates the memory space (heap) to store the number value
• }

• if (m_ptr == NULL) // no more heap memory available
• {
• return false;
• }
• else
• {
• *m_ptr = number; // copy the number value in the newly created heap memory

• return true;
• }
• }

22

• //--
• // is declared friend, so direct access to private data member
• // for debugging purposes only

• ostream& operator << (ostream &ostr, const Pointer &pointer)
• {
• ostr << "m_ptr is stored at location: " << &(pointer.m_ptr)
• << endl;
• ostr << "m_ptr points to location: " << pointer.m_ptr << endl;
• ostr << "contents of location is: " << *pointer.m_ptr << endl;

• return ostr;
• }

• //--

23

• int main()
• {
• Pointer ptr1;
• Pointer ptr2;

• ptr1.Set (89);
• ptr2 = ptr1;

• cout << "Pointer 1:" << endl;
• cout << ptr1;
• cout << endl;

• cout << "Pointer 2:" << endl;
• cout << ptr2;
• cout << endl;

• return 0;
• }

24

Output From Test Program

25

Pointer 1:

m_ptr is stored at location: 0012FF70

m_ptr points to location: 00321E08

contents of location is: 89

Pointer 2:

m_ptr is stored at location: 0012FF6C

m_ptr points to location: 00321E08

contents of location is: 89

The two Pointer
objects point to the

same location!

The Destructor

26

• Destructors are actioned in the opposite order to the construction of objects.

• Therefore in the test program, pointer2 destructs, followed by pointer1.

• But in this case, it does not matter as the problem exists either way.

• When pointer2 destructs, it releases the memory to which it points.

• Unfortunately, when pointer1 destructs it tries to do the same thing, so we get:

Shallow Copy in Memory

27

m_ptr

Pointer1

Pointer pointer1; NULL

m_ptr

Pointer1

pointer1.Set(89); 89

pointer2 = pointer1;
m_ptr

Pointer2

END

Shallow Copy in Memory

28

m_ptr

Pointer1

~pointer2 () 89

~pointer1 ()
m_ptr

Pointer2

NULL

The memory
location is

reclaimed by the
OS, and no longer

available to our
program.

So destructing
pointer1 causes an

attempt by our code
to access memory

that is not ours,
hence the crash.

Preventing a Shallow Copy

• You can ensure a deep copy by
– Writing a copy method;

• Calling it from the assignment operator;

• Calling it from a copy constructor.

• OR
– Privatising the copy constructor;

– Privatising the assignment operator;

– Thereby preventing the compiler from creating
default versions.

29

Ensuring a Deep Copy
• class Pointer

• {

• public:

• Pointer () {m_ptr = NULL;} //prefer nullptr

• Pointer (const Pointer &initialiser);

• ~Pointer () {Clear ();} // destructor prevents memory leaks

• void Clear ();

• bool Copy (const Pointer &rhs); // [1] should be private or protected

• // Returns false if there is no memory available

• bool Set (int number);

• // Get method would be needed when converting to non-friend, non-member

• friend ostream& operator << (ostream &ostr, const Pointer &pointer); // covert to non-friend, non member

• Pointer& operator = (const Pointer &rhs);

• private:

• int *m_ptr;

• };

30

Copy constructor

Copy method not
the copy

constructor [1]

Overloaded
assignment

operator

Copy Constructor

• //--

• Pointer::Pointer (const Pointer &initialiser)

• {

• m_ptr = NULL; // Set method needs this, constructor sets to null

• Copy (initialiser);

• }

31

Copy () is then
called, but note that
we cannot return a

value from a
constructor, so if
Copy () fails, we
have no way of

knowing in code.

Copy Method
• //--

• bool Pointer::Copy (const Pointer &rhs)
• {
• if (rhs.m_ptr != NULL) // what happens if you don’t check?
• {
• return Set (*(rhs.m_ptr)); // with rhs int data value
• }
• else
• {
• return false;
• }
• }

32

Overloaded Assignment Operator

• //--

• Pointer& Pointer::operator = (const Pointer
&rhs)

• {

• Copy (rhs);

• return *this;

• }

33

Like the constructor,
it simply uses the
Copy () method.

It is also similarly
dangerous!‘this’ is a pointer to

the object itself.

Therefore ‘*this’ is
the contents of the

object.

Returning it fulfills
the requirements of

the assignment
operator.

• int main()
• {
• Pointer ptr1;
• Pointer ptr2;
•

• ptr1.Set (89);
• ptr2 = ptr1;
•

• Pointer ptr3 (ptr1);

• cout << "Pointer 1:" << endl;
• cout << ptr1;
• cout << endl;

• cout << "Pointer 2:" << endl;
• cout << ptr2;
• cout << endl;

• cout << "Pointer 3:" << endl;
• cout << ptr3;
• cout << endl;

• return 0;
• }

34

These two
statements now

lead to deep copies
of ptr1

Output From Test Program

35

Pointer 1:

m_ptr is stored at location: 0012FF70

m_ptr points to location: 00321E08

contents of location is: 89

Pointer 2:

m_ptr is stored at location: 0012FF6C

m_ptr points to location: 00321E40

contents of location is: 89

Pointer 3:

m_ptr is stored at location: 0012FF68

m_ptr points to location: 00321E78

contents of location is: 89

The deep copy
ensures that the

three Pointer
objects point to

different locations

Preventing Default Versions [1]
• class Pointer
• {
• public:
• Pointer () {m_ptr = NULL;}
• ~Pointer () {Clear ();}

• void Clear ();
• bool Copy (const Pointer &rhs) {return Set (*rhs.m_ptr);}

• // Returns false if there is no memory available
• bool Set (int number);

• friend ostream& operator << (ostream &ostr, const Pointer &pointer);

• private:
• int *m_ptr;

• Pointer& operator = (const Pointer &rhs) {return *this;}
• Pointer (const Pointer &initialiser) {};
• };

36

Privatised
declarations

prevent outside
code using neither
of the assignment
operator nor the
copy constructor.

[2]

Preventing Default Versions
• class Pointer
• {
• public:
• Pointer () {m_ptr = NULL;}
• ~Pointer () {Clear ();}

• void Clear ();
• bool Copy (const Pointer &rhs) {return Set (*rhs.m_ptr);}

• // Returns false if there is no memory available
• bool Set (int number);

/ / convert to non-friend, non-member. Get method would be needed.
friend ostream& operator << (ostream &ostr, const Pointer &pointer);

• private:
• int *m_ptr;

• Pointer& operator = (const Pointer &rhs) {return *this;} [1]
• Pointer (const Pointer &initialiser);
• };

37

The test program
will now be

prevented from
compiling.

Some Final Points

• Mutator/Set methods should set one piece of data only and should return

a boolean to indicate success or failure.

• Call other methods rather than re-write code.

• Never do output in any method other than an output method. Data

Structure classes do not have an output method. The use accessor/get

methods.

• A data class should not do input from file/keyboard or output to

screen/file.

• Make every class you write minimal: only include those methods that you

know you need. See earlier notes about what constitutes minimal.

38

Readings

• Textbook: Chapter on Classes and Data
Abstractions.

• Textbook: Chapter on Pointers, Classes, Virtual
Functions, Abstract classes, and Lists: Section
on Shallow versus Deep Copy and Pointers;
Section on Classes and Pointers: Some
peculiarities.

39

Composition

• Composition is where one class has a data
member that is an object of another class.

• The example given in Lecture 11, was
TrafficLight, which had three Lights and 0..2
PatternLights.

40 of 26

Design Change

• Lets say that after thinking about the problem
a design change was needed as shown below.

41 of 26

Another Design Change

• And then when working on the algorithm, it
was realised that the behaviour changed
depending on the number of lights in a traffic
light.

• This would have meant that within the code
there would be lots of if statements to do
with how many of each type of light.

• This was a sure sign that the design was still
incorrect, so another change was made to the
design.

42 of 26

43 of 26

Yet Another Design Change

• However, after a while I hit problems again.
• The composition seemed forced and the whole

thing very complicated: a sure sign it was still
incorrect.

• So I went out for a drive to look at traffic lights in
action.

• I quickly realised that a complex traffic light was
not composed of a simple traffic light and a three
arrow traffic light, it was actually composed of
three single and three pattern lights.

• So my ‘final’ design was:

44 of 26

45 of 26

Design Changes Continued

• Of course there would be lots more types of traffic light than just these. [1]
• And if I was really coding the whole thing, I might well decide that my original design (or

something else entirely) was more correct.
• Which is the wonderful advantage of software engineering over conventional engineering:

design need not be static but the most important lesson is when starting on a problem
solving task, find out what is the real problem!!!
– Don’t try to just imagine what the problem is going to be.
– Do some “leg work”, talk to end users, as changes in design (even in software engineering) has costs

associated with it.

• Remember:
– Code incrementally.
– If everything is becoming too complicated: you have almost certainly stuffed up the design.
– Don’t be afraid to change your design. Implementing a wrong design will make the solution useless.
– Don’t be afraid to question the design of others.
– Refactor incrementally.
– Test everything after every change.

46 of 26

Finite State Machines

• The traffic light classes are examples of Finite State Machines.

• An FSM has a limited set of states that are visited one after the other.

• It is not possible to have two states at once: you cannot have both a red and green
light showing in a normal FSM. There are fuzzy FSMs but these are outside the
scope of this unit.

• FSM are used in simulation and modelling of many industrial and mechanical
processes. Even the compiler you are using to compile your code uses state
machines.

• A single Change() method replaces all the Set() methods.

• A single StateIs() method replaces all Get() and output methods.

• The term Initialise() is used rather than Clear(), as it is only usually
called at the start.

47 of 26

• // Constants.h
• // Required by several classes
• //--

• #ifndef CONSTANTS
• #define CONSTANTS

• // Traffic light colours
• const int RED_LIGHT = 0; [1]
• const int ORANGE_LIGHT = 1;
• const int GREEN_LIGHT = 2;

• // FSM error state
• const int ERROR_STATE = -1;

• // Size of a traffic light
• const float TL_RADIUS = 12.5; // cm

• #endif

48 of 26

Constants that are
required by multiple
classes are put in a
header file of their

own.

• // SimpleTrafficLight.h

• // Comments and includes etc up here as per normal – use doxygen comments instead

• // friend operator used for debugging. Design does not require it.

• //---

• const int STL_NUMBER = 3;

• //---

• class SimpleTrafficLight

• {

• public:

• SimpleTrafficLight () {Initialise();}

• ~SimpleTrafficLight () {};

• // Initialise the class

• void Initialise ();

• // Change the light to the next state

• bool Change ();

• // Output the state – for debugging/demo purposes only.

• friend ostream& operator << (ostream &ostr, const SimpleTrafficLight &light);

49 of 26

• private:
• int m_state;
• vector<Light> m_lights; [1]

• // Clear all old data
• void Clear ();

• // Set the light sizes and colours
• void InitialiseLights ();
• };

• #endif

50 of 26

• // SimpleTrafficLight.cpp
• // Comments and includes as per normal
• //---

• void SimpleTrafficLight::Initialise ()
• {
• Clear ();

• // Add the correct number of lights to the vector
• Light light;
• for (int index = 0; index < STL_NUMBER; index++)
• {
• m_lights.push_back (light); // think about this. Is it the same light?

• }

• InitialiseLights ();
• }

51 of 26

• //---

• void SimpleTrafficLight::Clear ()

• {

• m_lights.clear();

• m_state = ERROR_STATE;

• }

• //---

52 of 26

• void SimpleTrafficLight::InitialiseLights()
• {
• // Set the radii of the lights
• for (int index = 0; index < STL_NUMBER; index++)
• {
• m_lights[index].Set(TL_RADIUS);
• }

• // Set the colours
• m_lights[RED_LIGHT].Set("red");
• m_lights[ORANGE_LIGHT].Set("orange");
• m_lights[GREEN_LIGHT].Set("green");
•
• // Switch the red light on
• m_lights[RED_LIGHT].Switch();

• // Set the state
• m_state = RED_LIGHT;
• }

53 of 26

• bool SimpleTrafficLight::Change()

• {

• switch (m_state)

• {

• case RED_LIGHT:

• m_lights[RED_LIGHT].Switch();

• m_lights[GREEN_LIGHT].Switch();

• m_state = GREEN_LIGHT;

• break;

• case GREEN_LIGHT:

• m_lights[GREEN_LIGHT].Switch();

• m_lights[ORANGE_LIGHT].Switch();

• m_state = ORANGE_LIGHT;

• break;

• case ORANGE_LIGHT:

• m_lights[ORANGE_LIGHT].Switch();

• m_lights[RED_LIGHT].Switch();

• m_state = RED_LIGHT;

• break;

• }

• return (m_state != ERROR_STATE);

• }

54 of 26

• // As an exercise convert this to non-friend, non-member operator
• ostream& operator << (ostream &ostr, const SimpleTrafficLight &light)
• { [1]
• for (int index = 0; index < STL_NUMBER; index++)
• {
• string colour;
• light.m_lights[index].Get(colour);
• if (index == light.m_state)
• {
• ostr << "O " << colour << endl;
• }
• else
• {
• ostr << "o" << endl;
• }
• }

• return ostr; [2]
• }

55 of 26

Simple Unit Test Program

• int main() // not a complete unit test until you have code to test each method.
• {
• SimpleTrafficLight light;

• cout << "Each time you press <Enter> the lights will change,"
• << "use <Ctrl>-C to end the program." << endl;

• while (true)
• {
• cout << light << endl;
• light.Change();
• getchar(); // clunky!!
• }

• cout << endl;

• return 0;
• }

56 of 26

Aggregation
• Aggregation is used when a class has an attribute that is the

object of another class, but it does not have control over the
construction and destruction of that object.

• A common use of aggregation occurs in Windows
programming, where many objects may want to refer to the
current window, however none of them have the power to
delete (close/destruct) the window.

• Similarly a Unit class would be associated with a lecturer and
students, but would not control them, so a Unit offering would
have an aggregation of a Unit, lecturers and students, rather
than a composition of them. Unit offering would be the class
that contains all of these aggregations.

• Aggregation necessitates using an attribute that is either an
index, reference or pointer to the aggregated object.

• Does aggregation actually exist at all, or is the class actually
composed of a pointer or reference?

• In this unit we will not worry about the why’s or wherefore’s
we will simply use and talk about aggregation as described
above.

57

Linked Lists

• A good example of aggregation is what occurs in
a linked list.

• A linked list is exactly what it sounds like: each
piece of data is combined with a link (pointer) to
the next piece of data. This combination is called
a node.

• In that situation the node class is composed of
the data, but aggregates the next node.

• This is because if we delete/remove a node, it
does not automatically delete the following node.

• We will cover lists again in a later lecture. For this
topic, you need to know the basics.

58

Linked List Diagrams

59

Abstract View

UML Diagram

When you have this
notation, is Node
responsible for deleting
itself?

• In C++, a simplified node class that stores a single integer piece of data, might look
like this:

• class Node [1] // class or struct – think carefully
• {
• public:
• Node () {m_next = NULL;} // or nullptr. Always initialise to null
• ~Node () {} // [2]

• Node *GetNext ();
• void SetNext (Node *next) {m_next = next;}

• int GetData () {return m_data;}
• void SetData (int data) {m_data = data;}

• private:
• int m_data; // data is strongly associated with Node – see UML
• Node *m_next; // aggregation. Would the destructor delete this?
• };

60 of 26

Templates <>

• The Node class is almost identical no matter what
type of data is stored within it.

• Therefore, rather than re-write it every time we
want to store a different data type, we use a
template.

• Templates are descriptions of types which have to
be instantiated with a particular type at run time.

• We have already used them when using the STL.

• A template node class would look like this:

61

• template <class DataType> [1]
• class Node
• {
• public:
• Node () {m_next = NULL;}
• ~Node () {}

• Node *GetNext ();
• void SetNext (Node *next) {m_next = next;}

• void Data (DataType &data) {data = m_data;}
• void SetData (const DataType &data) {m_data = data;}

• private:
• DataType m_data; // same idea as before about relationship

• Node *m_next;
• };

62 of 26

We tell the
compiler it is a

template. The type
is now a parameter.

We use DataType
to replace ‘int’

everywhere

• Within our program, we then instantiate a node in the same way as
with the STL:
typedef Node<int> IntNodeType; //IntNode is a type

IntNodeType intNode;

• IntNodeType is a type; in this case an integer Node class.
• The template Node can’t contain anything as T is not bound to a

type. Once bound to a type, it is realised, and can be used in an
application.

• There are limitations to templates:
– They can only be used where all the methods and attributes are

the same for every class.
– They require all the code to go in the header file or else the

code file has to be included! See textbook chapter on,
Overloading and Templates for further discussion.

– They can make the code very difficult to debug.
• They should be avoided except for very simple classes with only a

few, clearly defined methods and attributes – generic classes.

63

In UML

• The box (with T) should have a dashed border.
Arrows are diamond shaped. Lines are
dashed. (Realisation [1] created in StarUml
tool)

64

• The Realised types Node<integer> and Node<Light> can contain data.

• The template Node cannot contain data.

Exercise

• How would you the Law of Demeter [1] be
applied when applied to objects that are
composed of other objects (composition or
aggregation)?

• Would there be situations where it would make
sense to violate this law?

65

Readings

• Textbook: Chapter on Classes and Data
Abstractions.

• Chapter on User-Defined simple data types,
Namespaces and the string Type.

• Chapter on Inheritance and Composition.
• You should go through the Programming example: Grade

Report in the chapter on Inheritance and Composition.

• Entire chapter on Pointers, Classes, Virtual
Functions, Abstract classes, and Lists.

• Chapter on Overloading and Templates.

66

Time Wasting Code

• // Pointless program that does nothing!
• 1: int main()
• 2: {
• 3: for (int index = 0; index < 10; index++)
• 4: {
• 5: Light light; // constructor used
• 6: light = InputLight ();
• 7: }
• 8:
• 9: cout << endl;
• 10: return 0;
• 11: }

67

• 12: Light InputLight ()
• 13: {
• 14: Light light; // constructor used
• 15:
• 16: float radius;
• 17: cout << "Enter radius of light in centimeters: ";
• 18: cin >> radius;
• 19: light.SetRadius(radius);
• 20:
• 21: string colour;
• 22: cout << "Enter colour of light: ";
• 23: cin >> colour;
• 24: light.SetColour (colour);

• 25: return light; // copy constructor used
• 26: }

68

How Many Constructions?

69 of 22

Index

0

Construction
Count

15: Light light;

How Many Constructions?

70 of 22

Index

0

Construction
Count

214: Light light

How Many Constructions?

71 of 22

Index

0

Construction
Count

325: return light;

3 Constructors already,
and index is still only 0, so by the time index is 10,

we will have done
30 constructions unless some optimisation is

done

Good Code (refactored)

• // Pointless program that does nothing!
• int main()
• {
• Light light;
• for (int index = 0; index < 10; index++)
• {
• InputLight (light);
• }

• cout << endl;
• return 0;
• }

72

The constructor is
now outside the

loop.

The data is now
returned as a

parameter rather than
function-wise.

• void InputLight (Light &light)
• {
• float radius;
• cout << "Enter radius of light in centimeters: ";
• cin >> radius;
• light.SetRadius(radius);

• string colour;
• cout << "Enter colour of light: ";
• cin >> colour;
• light.SetColour (colour);
• }

73

The data is
now returned

as a parameter
rather than

function-wise.

Therefore we
do not need a
local variable.

The 30
constructions is now

reduced to only
one!

Summary

• Construction of an object takes time.

• Therefore the more constructions, the slower the code.

• When returning an object by value function-wise, there is a hidden
construction (copy construction) as the data is transferred back to the
calling function.

• This extra construction time cost is exacerbated if it is placed within a
loop with a local variable.

• Objects passed-by-value into a function also cause an extra
construction – copy constructor used.

74 of 22

Rules

• It is important to follow the correct rules for
parameter passing and function returning.

• The rules are designed to make your code as
efficient and bug-resistant as possible.

• Failure to stick to these rules may cost you marks in
assignments. You would also have spent time trying
to fix poor code, so it is not worth ignoring the rules.

75 of 22

• Rule: [1] Simple types (int, float etc) are passed by either value or non const
reference or returned function-wise:

– Nothing is to be returned:

void DoSomething (float num);

– Change expected to the variable to be returned:

void DoSomething (float &num);

– Something is expected to be returned:

float DoSomething (float num);

• Rule: Objects are always passed by reference

– No change expected to light:

void DoSomething(const Light &light);

– Change expected to light:

void DoSomething(Light &light);

76

Inheritance

• Inheritance tends to get overused and badly used.

• However there are some times when it is both correct
and useful.

• Inheritance is correct to use when:
1. the derived class (sub-class, child) “is a” parent class (super-

class),

2. the derived class requires all the data declared in the parent,

3. the derived class uses every method defined in the parent.

77 of 22

Examples

• The PatternLight described in one of the earlier
lectures is a good example of correct use of
inheritance:
– PatternLight is a Light
– PatternLight requires m_colour, m_radius and
m_on

– PatternLight will use all of Light’s methods.

• A poor example would be Square inheriting from
Rectangle:
– Square is a Rectangle
– BUT, Square does not need m_width, which would

have been defined in Rectangle.

78

Protected Data
• For the Light class, we made all data private.
• Private data is protected from absolutely

everything, including derived classes.
• Therefore when you derive a class, you need to

alter the parent class so that the data is protected
rather than private if you want derived classes to
access parent data.

• Protected data is protected from view by the
outside world, but available to derived classes.

• One can make all data protected as a rule, and
then never have to go back and make changes.
[1] But this is terrible. Only classes that are
meant to be derived from should have
“protected” specified.

79

Constructors and Destructors

• When you construct a class that is derived from another
class, the default constructor of the parent class is
automatically run before the constructor of the derived
class. [1]

• However the destructor of the parent class is not
automatically run.

• To ensure that it is automatically run, you need to add the
‘virtual’ keyword in front of it (parent destructor) in the
header file:

virtual ~Light ();

• Destructors are run in reverse order: the child class and
then the parent class.

80

Virtual Methods

• If a method in the parent class is to be over-ridden in
the child class, then it too is declared as virtual: [1]
virtual void DoSomething (); // parents

• If the child class wishes to access the parent class’
version, then it uses the scope resolution operator:
void Child::DoSomething ()

{

parent::DoSomething();// call parent’s

version.

}

81

Required Changes to the Light Class

• class Light
• {
• public:
• Light () {Clear ();}
• virtual ~Light () {};

• virtual void Clear ();
• //...

• protected:
• // Any string is acceptable, we shall assume it is a colour
• string m_colour;
• // In centimetres
• float m_radius;
• bool m_on;
• };

82

The destructor
becomes ‘virtual’

Data becomes
‘protected’ rather

than private.

The Clear() operator
becomes virtual

• // A light that shines through a cutout giving it a particular shape

• //

• // Version

• // 01 - Nicola Ritter

• //

• //--

• #ifndef PATTERN_LIGHT

• #define PATTERN_LIGHT

• //--

• #include "../Light/Light.h"

• //--

• // Available shapes

• //--

• const int NO_SHAPE = 0;

• const int LEFT_ARROW = 1;

• const int RIGHT_ARROW = 2;

• const int MAX_SHAPE = 2;

83

The Light header file must
be included.

You can list as many shapes
as you want, but make sure

that MAX_SHAPE is
changed to match the

highest number

• //--

• class PatternLight : public Light [1]
• {
• public:
• PatternLight () {Clear();}
• PatternLight (const PatternLight &plight);
• virtual ~PatternLight () {};

• void Clear ();

• bool SetShape (int shape);
• int Get () const {return m_shape;}

• friend ostream& operator << (ostream &ostr, const PatternLight &light); [2]
• PatternLight & operator = (const PatternLight &plight);

• private:
• int m_shape;
•

• };

• //--

• #endif

84

The Clear method
overrides those in

the Light class

Set and Get methods
are only required for
this class’ attributes.

• void PatternLight::Clear ()

• {

• Light::Clear();

• m_shape = NO_SHAPE;

• }

85

PatternLight calls the
Clear() from the Light

parent, before
initialising its own

attributes.

• bool PatternLight::SetShape (int shape)
• {
• if (shape >= NO_SHAPE && shape <= MAX_SHAPE)
• {
• m_shape = shape;
• return true;
• }
• else
• {
• return false;
• }
• }
•

86

• ostream& operator << (ostream &ostr, const PatternLight &light)
• {
• ostr << static_cast<Light>(light);

• if (light.m_on && light.m_shape != NO_SHAPE)
• {
• ostr << ", showing ";
• switch (light.m_shape)
• {
• case LEFT_ARROW:
• ostr << "left arrow";
• break;
• case RIGHT_ARROW:
• ostr << "right arrow";
• break;
• }
• }

• return ostr;
• }

87

The static_cast tells
the compiler to

redefine light as a
Light instead of a

PatternLight.

This line of code,
therefore, runs the
output code in the

parent class.

Make sure you only use a static_cast when there is
an inherit relationship between the two.

Therefore all this
method has to do is
output information
based on this class’

attributes

Readings

• Textbook: Chapter on Classes and Data
Abstractions.

• Chapter on Inheritance and Composition.

88

